Integrated Design for Space Transportation System

Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems discusses the importance of reliable cryogenic systems, a pivotal part of everything from engine propulsion to fuel deposits. As some of the most efficient systems involve advanced cryogenic fluid management systems that present challenging issues, the book tackles issues such as the difficulty in obtaining data, the lack of quality data and models, and the complexity in trying to model these systems. The book presents models and experimental data based on rare and hard-to-obtain cryogenic data. Through clear descriptions of practical data and models, readers will explore the development of robust and flexible liquid acquisition devices (LAD) through component-level and full-scale ground experiments, as well as analytical tools. This book presents new and rare experimental data, as well as analytical models, in a fundamental area to the aerospace and space-flight communities. With this data, the reader can consider new and improved ways to design, analyze, and build expensive flight systems. Presents a definitive reference for design ideas, analysis tools, and performance data on cryogenic liquid acquisition devices Provides historical perspectives to present fundamental design models and performance data, which are applied to two practical examples throughout the book Describes a series of models to optimize liquid acquisition device performance, which are confirmed through a variety of parametric component level tests Includes video clips of experiments on a companion website

Space Mission Analysis and Design "Human spaceflight: mission analysis and design" is for you if you manage, design, or operate systems for human spaceflight! It provides end-to-end coverage of designing human space systems for Earth, Moon, and Mars. If you are like many others, this will become the dog-eared book that is always on your desk -and used. The book includes over 800 rules of thumb and sanity checks that will enable you to identify key issues and errors early in the design processes. This book was written by group of 67 professional engineers, managers, and educators from industry, government, and academia that collectively share over 600 years of space-related experience! The team from the United States, Austria, Canada, France, Germany, Japan, and Russia worked for four-and-one-half years to capture industry and government best practices and lessons-learned from industry and government in an effort to baseline global conceptual design experience for human spaceflight. "Human spaceflight: mission analysis and design" provides a much-needed big-picture perspective that can be used by managers, engineers and students to integrate the myriad of elements associated with human spaceflight.

Modern Engineering for Design of Liquid-Propellant Rocket Engines The book follows a unified approach to present the basic principles of rocket propulsion in concise and lucid form. This textbook comprises of ten chapters ranging from brief introduction and elements of rocket propulsion, aerothermodynamics to solid, liquid and hybrid propellant rocket engines with chapter on electrical propulsion. Worked out examples are also provided at the end of chapter for understanding uncertainty analysis. This book is designed and developed as an introductory text on the fundamental aspects of rocket propulsion for both undergraduate and graduate students. It is also aimed towards practicing engineers in the field of space engineering. This comprehensive guide also provides adequate problems for audience to understand intricate aspects of rocket propulsion enabling them to design and develop rocket engines for peaceful purposes.

Physics of Electric Propulsion With the second edition of Space Mission Analysis and Design, two changes have been introduced in the Space Technology Library. Foremost among these is the introduction of the Space Technology Series as a part of the Space Technology Library. Dr. Wiley Larson of the US Air Force Academy and University of Colorado, Colorado Springs, will serve as Managing Editor for the Space Technology Series. This series is a cooperative effort of the Department of Defense, National Aeronautics and Space Administration, Department of Energy, and European Space Agency, coor
The authors of the Space Propulsion Analysis and Design book assess whether the technology development program, which focuses on developing technologies to enable a new generation of space launchers, is directed toward these goals. They emphasize the importance of reliable operations and the need for aircraft-like quick turnaround and more routine, affordable access to space.

Without reliable operations, the cost of the transportation to space becomes prohibitively high. More routine, affordable access to space will depend on advanced space technology development and its technology base, which has been largely depleted. However, success in executing future NASA space missions will depend on advanced technology developments that should already be underway.

The book is organized around specific guidance and recommendations on how the effectiveness of the technology development program managed by OCT can be enhanced in the face of scarce resources. It is written by 24 engineers in the space industry, who cover the themes of ensuring a successful mission, reducing total cost through good designs and intelligent risk management, introducing and requiring development process, requirements documentation, requirements definition, space mission environments, and reducing total cost through good designs and intelligent risk management.

Control System Design: Spacecraft Structures and Mechanisms describes the integral process of developing cost-effective, reliable structures and mechanical products for space programs. Processes are defined, methods are described and examples are given. It has been written by 24 engineers in the space industry, who cover the themes of ensuring a successful mission, reducing total cost through good designs and intelligent risk management, and reducing total cost through good designs and intelligent risk management.

Aeronautical Technologies for the Twenty-First Century NASA's Office of the Chief Technologist (OCT) has begun to rebuild the advanced space technology program in the agency with plans laid out in 14 draft technology roadmaps. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development and its technology base has been largely depleted. However, success in executing future NASA space missions will depend on advanced technology developments that should already be underway. Reaching out to involve the external technical community, the National Research Council (NRC) considered the 14 draft technology roadmaps prepared by OCT and ranked the top technical challenges and highest priority technologies that NASA should emphasize in the next 5 years. This report provides specific guidance and recommendations on how the effectiveness of the technology development program managed by OCT can be enhanced in the face of scarce resources.

Space Transportation The key to opening the use of space to private enterprise and to broader public uses lies in reducing the cost of the transportation to space. More routine, affordable access to space will entail aircraft-like quick turnaround and reliable operations. Currently, the space shuttle is the only reusable launch vehicle, and even parts of it are expendable while other parts require frequent and extensive refurbishment. NASA's highest priority new activity, the Reusable Launch Vehicle program, is directed toward developing technologies to enable a new generation of space launchers, perhaps but not necessarily with single stage to orbit capability. This book assesses whether the technology development, test and analysis programs in
propulsion and materials-related technologies are properly constituted to provide the information required to support a December 1996 decision to build the X-33, a technology demonstrator vehicle; and suggest, as appropriate, necessary changes in these programs to ensure that they will support vehicle feasibility goals.

Elements of Gas Turbine Propulsion

An understandable perspective on the types of space propulsion systems necessary to enable low-cost space flights to Earth orbit and to the Moon and the future developments necessary for exploration of the solar system and beyond to the stars.

A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs

Space propulsion systems have a great influence on our ability to travel to other planets or how cheap a satellite can provide TV programs. This book provides an up-to-date overview of all kinds of propulsion systems ranging from classical rocket technology, nuclear propulsion to electric propulsion systems, and further to micro-, propellantless and even breakthrough propulsion, which is a new program under development at NASA. The author shows the limitations of the present concepts and how they could look like in the future. Starting from historical developments, the reader is taken on a journey showing the amazing technology that has been put on hold for decades to be rediscovered in the near future for questions like how we can even reach other stars within a human lifetime. The author is actively involved in advanced propulsion research and contributes with his own experience to many of the presented topics. The book is written for anyone who is interested in how space travel can be revolutionized.

Electrostatic Propulsion

Written to answer the question of how to design rockets, Space Propulsion Analysis and Design provides readers the ability to complete a basic system configuration, mass estimate, and an estimate of the system’s performance. Written by 16 engineers with decades of space design experience, this book offers advice, tested configurations, and historical precedents for rocket performance. The book covers the basics of rocket design, major technology types such as liquids, solids, hybrids, nuclear, and electric, plus a mission design example and discussion of future possibilities for space propulsion. Written for practicing systems and propulsion engineers, managers, and engineering students, this book gives readers a practical handbook to the design and configuration of rocket systems.

Reusable Launch Vehicle Electrostatic Propulsion

Focuses on issues, trends, and developments in electrostatic propulsion. The compilation is composed of technical papers primarily based on the symposium of the American Rocket Society held at the U.S. Naval Postgraduate School in Monterey, California on November 3–4, 1960. The book presents an investigation of the performance of ion rockets employing electron-bombardment ion sources. It also underscores the value of duoplasmatron in ion propulsion. The compilation then looks at the development of a negative ion source. Calibration of mass spectrometer, description of ion source, and the theory of surface ionization are described. The book also discusses experiments on oscillating-electron plasma source; the theory of ion emission from porous media; and the effects of surface structure and adsorption on the ionization efficiency of a surface ionization source. The text also considers a number of experiments, including the space-charge theory for ion beams, circular beam neutralization, and transient and steady state behavior in cesium ion beams. The book is a good source of information for readers wanting to study electrostatic propulsion.

Future Spacecraft Propulsion Systems

Principles of Nuclear Rocket Propulsion provides an understanding of the physical principles underlying the design and operation of nuclear fission-based rocket engines. While there are numerous texts available describing rocket engine theory and nuclear reactor theory, this is the first book available describing the integration of the two subject areas. Most of the book's emphasis is primarily on nuclear thermal rocket engines, wherein the energy of a nuclear reactor is used to heat a propellant to high temperatures and then expel it through a nozzle to produce thrust. Other concepts are also touched upon such as a section devoted to the nuclear pulse rocket concept wherein the force of externally detonated nuclear explosions is used to accelerate a spacecraft. Future crewed space missions beyond low earth orbit will almost certainly require propulsion systems with performance levels exceeding that of today's best chemical engines. A likely candidate for that propulsion system is the solid core Nuclear Thermal Rocket or NTR. Solid core NTR engines are expected to have performance levels which significantly exceed that achievable by any currently conceivable chemical engine. The challenge is in the engineering details of the design which includes not only the thermal, fluid, and mechanical aspects always present in chemical rocket engine development, but also nuclear interactions and some unique materials restrictions. Sorts and organizes information on various types of nuclear thermal rocket engines into a coherent curriculum Includes a number of example problems to illustrate the concepts being presented Features a companion site with interactive calculators demonstrating how variations in the constituent parameters affect the physical process being described Includes 3D figures that may be scaled and rotated to better visualize the nature of the object under study.

Fundamentals of Rocket Propulsion

This book addresses a broad range of topics on antennas for space applications. First, it introduces the fundamental methodologies of space antenna design, modelling and analysis as well as the state-of-the-art and anticipated future technological developments. Each of the topics discussed are specialized and contextualized to the space sector. Furthermore, case studies are also provided to demonstrate the design and implementation of antennas in actual applications. Second, the authors present a detailed review of antenna designs for some popular applications such as satellite communications, space-borne synthetic aperture radar (SAR), Global Navigation Satellite Systems (GNSS) receivers, science
instruments, radio astronomy, small satellites, and deep-space applications. Finally it presents the reader with a comprehensive path from space antenna development basics to specific individual applications. Key Features: Presents a detailed review of antenna designs for applications such as satellite communications, space-borne SAR, GNSS receivers, science instruments, small satellites, radio astronomy, deep-space applications Addresses the space antenna development from different angles, including electromagnetic, thermal and mechanical design strategies required for space qualification Includes numerous case studies to demonstrate how to design and implement antennas in practical scenarios Offers both an introduction for students in the field and an in-depth reference for antenna engineers who develop space antennas This book serves as an excellent reference for researchers, professionals and graduate students in the fields of antennas and propagation, electromagnetics, RF/microwave/millimetrewave systems, satellite communications, radars, satellite remote sensing, satellite navigation and spacecraft system engineering. It also aids engineers technical managers and professionals working on antenna and RF designs. Marketing and business people in satellites, wireless, and electronics area who want to acquire a basic understanding of the technology will also find this book of interest.

Design Methodologies for Space Transportation Systems

Spacecraft Structures and Mechanisms The only comprehensive text available on space propulsion for students and professionals in astronautics.

Electric Propulsion Development The only comprehensive text available on space propulsion for students and professionals in astronautics.

Theory of Aerospace Propulsion This text provides an introduction to gas turbine engines and jet propulsion for aerospace or mechanical engineers. The text is divided into four parts: introduction to aircraft propulsion; basic concepts and one-dimensional/gas dynamics; parametric (design point) and performance (off-design) analysis of air breathing propulsion systems; and analysis and design of major gas turbine engine components (fans, compressors, turbines, inlets, nozzles, main burners, and afterburners). Design concepts are introduced early (aircraft performance in introductory chapter) and integrated throughout. Written with extensive student input on the design of the book, the book builds upon definitions and gradually develops the thermodynamics, gas dynamics, and gas turbine engine principles.

Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems

Advanced Space Propulsion Systems The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbital mechanics of satellites including different coordinate frames, orbital perturbations and orbital transfers are explained. For launching the satellites to meet specific mission requirements, viz., payload/orbit, design considerations, giving step by step procedure are briefed. The selection methodology for launch vehicle configuration, its optimum staging and the factors which influence the vehicle performance are summarized. The influence of external, internal and dynamic operating environments experienced by the vehicle subsystems and the remedial measures needed are highlighted. The mission design strategies and their influence on the vehicle design process are elaborated. The various critical aspects of STS subsystems like flight mechanics, propulsion, structures and materials, thermal systems, stage auxiliary systems, navigation, guidance and control and the interdependencies and interactions between them are covered. The design guidelines, complexity of the flight environment and the reentry dynamics for the reentry missions are included. The book is not targeted as a design tool for any particular discipline or subsystem. Some of the design related equations or expressions are not attempted to derive from the first principle as this is beyond the scope of this book. However, the important analytical expressions, graphs and sketches which are essential to provide in-depth understanding for the design process as well as to understand the interactions between different subsystems are appropriately included.

Space Propulsion Analysis and Design Manned Spacecraft Design Principles presents readers with a brief, to-the-point primer that includes a detailed introduction to the information required at the preliminary design stage of a manned space transportation system. In the process of developing the preliminary design, the book covers content not often discussed in a standard aerospace curriculum, including atmospheric entry dynamics, space launch dynamics, hypersonic flow fields, hypersonic heat transfer, and skin friction, along with the economic aspects of space flight. Key concepts relating to human factors and crew support systems are also included, providing users with a comprehensive guide on how to make informed choices from an array of competing options. The text can be used in conjunction with Pasquale Sforza's, Commercial Aircraft
Design Principles to form a complete course in Aircraft/Spacecraft Design. Presents a brief, to-the-point primer that includes a detailed introduction to the information required at the preliminary design stage of a manned space transportation system. Involves the reader in the preliminary design of a modern manned spacecraft and associated launch vehicle. Includes key concepts relating to human factors and crew support systems. Contains standard, empirical, and classical methods in support of the design process. Culminates in the preparation of a professional quality design report.

Space Vehicle Design Throughout most of the twentieth century, electric propulsion was considered the technology of the future. Now, the future has arrived. This important new book explains the fundamentals of electric propulsion for spacecraft and describes in detail the physics and characteristics of the two major electric thrusters in use today, ion and Hall thrusters. The authors provide an introduction to plasma physics in order to allow readers to understand the models and derivations used in determining electric thruster performance. They then go on to present detailed explanations of: Thruster principles, Ion thruster plasma generators and accelerator grids, Hollow cathodes, Hall thrusters, Ion and Hall thruster plumes, Flight ion and Hall thrusters. Based largely on research and development performed at the Jet Propulsion Laboratory (JPL) and complemented with scores of tables, figures, homework problems, and references, Fundamentals of Electric Propulsion: Ion and Hall Thrusters is an indispensable textbook for advanced undergraduate and graduate students who are preparing to enter the aerospace industry. It also serves as an equally valuable resource for professional engineers already at work in the field.

Interplanetary Mission Analysis and Design Annotation This practical book gives young professionals all the information they need to know to get started in the space business. It takes you step-by-step through processes for systems engineering and acquisition, design and development, cost analysis, and program planning and analysis. You'll find the systems engineering and design process that applies to all space transportation systems, then the overall system architecture considerations that also apply to all space transportation systems. There is also detailed coverage of space launch vehicles by class, including the current space shuttle, other manned reusable systems, expendable systems, and future systems. A companion CD-ROM contains the Operations Simulation and Analysis Modeling System software.

CubeSat Handbook Prepared at the request of NASA, Aeronautical Technologies for the Twenty-First Century presents steps to help prevent the erosion of U.S. dominance in the global aeronautics market. The book recommends the immediate expansion of research on advanced aircraft that travel at supersonic speeds and research on designs that will meet expected future demands for supersonic and short-haul aircraft, including helicopters, commuter aircraft, "tiltrotor," and other advanced vehicle designs. These recommendations are intended to address the needs of improved aircraft performance, greater capacity to handle passengers and cargo, lower cost and increased convenience of air travel, greater aircraft and air traffic management system safety, and reduced environmental impacts.

NASA Space Technology Roadmaps and Priorities

Space Propulsion Analysis and Design CubeSat Handbook: From Mission Design to Operations is the first book solely devoted to the design, manufacturing, and in-orbit operations of CubeSats. Beginning with an historical overview from CubeSat co-inventors Robert Twiggs and Jordi Puig-Suari, the book is divided into 6 parts with contributions from international experts in the area of small satellites and CubeSats. It covers topics such as standard interfaces, on-board & ground software, industry standards in terms of control algorithms and sub-systems, systems engineering, standards for AITV (assembly, integration, testing and validation) activities, and launch regulations. This comprehensive resource provides all the information needed for engineers and developers in industry and academia to successfully design and launch a CubeSat mission. Provides an overview on all aspects that a CubeSat developer needs to analyze during mission design and its realization. Features practical examples on how to design and deal with possible issues during a CubeSat mission. Covers new developments and technologies, including ThinSats and PocketQubeSats.

Spacecraft Systems Engineering Rocket and air-breathing propulsion systems are the foundation on which planning for future aerospace systems rests. A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs assesses the existing technical base in these areas and examines the future Air Force capabilities the base will be expected to support. This report also defines gaps and recommends where future warfighter capabilities not yet fully defined could be met by current science and technology development plans.

Principles of Nuclear Rocket Propulsion

Initial Design and Analysis of a Space Propulsion Device which Develops Thrust Using Stored Thermal Energy Annotation "Design Methodologies for Space Transportation Systems" is a sequel to the author's earlier text, "Space Transportation: A Systems Approach to Analysis and Design." Both texts represent the most comprehensive exposition of the existing knowledge and practice in the design and project management of space transportation systems, and they reflect a wealth of experience by the author with the design and management of space systems. The text discusses new conceptual changes in the design philosophy away from multistage expendable vehicles to winged, reusable launch vehicles and presents an overview of the
systems engineering and vehicle design process as well as systems trades and analysis. Individual chapters are devoted to specific disciplines such as aerodynamics, aerothermal analysis, structures, materials, propulsion, flight mechanics and trajectories, avionics and computers, and control systems. The final chapters deal with human factors, payload, launch and mission operations, safety, and mission assurance. The two texts by the author provide a valuable source of information for the space transportation community of designers, operators, and managers. A companion CD-ROM succinctly packages some oversized figures and tables, resources for systems engineering and launch ranges, and a compendium of software programs. The computer programs include the USAF AIRPLANE AND MISSILE DATCOM CODES (with extensive documentation); COSTMODL for software costing; OPGUID launch vehicle trajectory generator; SUPERFLO—a series of 11 programs intended for solving compressible flow problems in ducts and pipes found in industrial facilities; and a wealth of Microsoft Excel spreadsheet programs covering the disciplines of statistics, vehicle trajectories, propulsion performance, math utilities, and more.

Manned Spacecraft Design Principles Progress in space safety lies in the acceptance of safety design and engineering as an integral part of the design and implementation process for new space systems. Safety must be seen as the principle design driver of utmost importance from the outset of the design process, which is only achieved through a culture change that moves all stakeholders toward front-end loaded safety concepts. This approach entails a common understanding and mastering of basic principles of safety design for space systems at all levels of the program organization. Fully supported by the International Association for the Advancement of Space Safety (IAASS), written by the leading figures in the industry, with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle and the International Space Station, this book provides a comprehensive reference for aerospace engineers in industry. It addresses each of the key elements that impact on space systems safety, including: the space environment (natural and induced); human physiology in space; human rating factors; emergency capabilities; launch propellants and oxidizer systems; life support systems; battery and fuel cell safety; nuclear power generators (NPG) safety; habitat activities; fire protection; safety-critical software development; collision avoidance systems design; operations and on-orbit maintenance. * The only comprehensive space systems safety reference, its must-have status within space agencies and suppliers, technical and aerospace libraries is practically guaranteed * Written by the leading figures in the industry from NASA, ESA, JAXA, (et cetera), with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle, small and large satellite systems, and the International Space Station. * Superb quality information for engineers, programme managers, suppliers and aerospace technologists; fully supported by the IAASS (International Association for the Advancement of Space Safety)

Safety Design for Space Systems Endorsed by the International Association for the Advancement of Space Safety (IAASS) and drawing on the expertise of the world's leading experts in the field, Safety Design for Space Operations provides the practical how-to guidance and knowledge base needed to facilitate effective launch-site and operations safety in line with current regulations. With information on space operations safety design currently disparate and difficult to find in one place, this unique reference brings together essential material on: Best design practices relating to space operations, such as the design of spaceport facilities. Advanced analysis methods, such as those used to calculate launch and re-entry debris fall-out risk Implementation of safe operation procedures, such as on-orbit space traffic management. Safety considerations relating to the general public and the environment in addition to personnel and asset protection. Taking in launch operations safety relating unmanned missions, such as the launch of probes and commercial satellites, as well as manned missions, Safety Design for Space Operations provides a comprehensive reference for engineers and technical managers within aerospace and high technology companies, space agencies, spaceport operators, satellite operators and consulting firms. Fully endorsed by the International Association for the Advancement of Space Safety (IAASS), with contributions from leading experts at NASA, the European Space Agency (EASA) and the US Federal Aviation Administration (FAA), amongst others Covers all aspects of space operations relating to safety of the general public, as well as the protection of valuable assets and the environment Focuses on launch operations safety relating to manned and unmanned missions, such as the launch of probes and commercial satellites.

Human Spaceflight Geared toward advanced undergraduates and graduate students, this text develops the concepts of electrical acceleration of gases for propulsion, from primary physical principles to realistic space thruster designs. 1968 edition.

Introduction to Spacecraft Thermal Design Readers of this book will be able to: utilize the fundamental principles of fluid mechanics and thermodynamics to analyze aircraft engines, understand the common gas turbine aircraft propulsion systems and be able to determine the applicability of each, perform system studies of aircraft engine systems for specified flight conditions, perform preliminary aero-thermal design of turbomachinery components, and conceive, analyze, and optimize competing preliminary designs for conventional and unconventional missions. Early coverage of cycle analysis provides a systems perspective, and offers context for the chapters on turbomachinery and components. Broader coverage than found in most other books - including coverage of propellers, nuclear rockets, and space propulsion - allows analysis and design of more types of propulsion systems In depth, quantitative treatments of the components of jet propulsion engines provides the tools for evaluation and component matching for optimal system performance Worked examples and end of chapter exercises provide practice for analysis, preliminary design, and systems integration.
Rocket and Spacecraft Propulsion Annotation This text discusses the conceptual stages of mission design, systems engineering, and orbital mechanics, providing a basis for understanding the design process for different components and functions of a spacecraft. Coverage includes propulsion and power systems, structures, attitude control, thermal control, command and data systems, and telecommunications. Worked examples and exercises are included, in addition to appendices on acronyms and abbreviations and spacecraft design data. The book can be used for self-study or for a course in spacecraft design. Brown directed the team that produced the Magellan spacecraft, and has taught spacecraft design at the University of Colorado. Annotation c. Book News, Inc., Portland, OR (booknews.com).

Elements of Spacecraft Design Progress in Astronautics and Aeronautics, Volume 9: Electric Propulsion Development covers the proceedings of the Second Electric Propulsion Conference of the American Rocket Society, held in Berkeley, California on March 14-16, 1962. The conference focuses on the existing problems in electric propulsion and their possible solutions. This book is organized into four sections encompassing 35 chapters. The first section deals with the thermodynamics of arcs; the problems of heat and momentum transfer; the chemical processes within arcs; the arc system materials; and the arc jet design problems. The second section considers the problems of ion systems, the various ion sources, and the neutralization of ion beams. This section also looks into the basic ionization processes, the production and charging of heavy particles, the corrosive properties of cesium, and the ion-optical designs. The third section describes various plasma systems, including helical transmission lines, pulsed pinch accelerators, coaxial systems, and j x B accelerators. The theoretical analyses of these systems are briefly examined. The fourth section includes papers on flight testing of electric propulsion models, on vertical rocket probes, and on satellites. This section also discusses some advanced concepts in electric propulsion, such as air scooping during ascent through the atmosphere, systems design and optimization, and planetary and interplanetary missions. This book is of great value to physicists, space engineers and designers, as well as researchers in the fields of astronautics and aeronautics.

Space Antenna Handbook Following on from the hugely successful previous editions, the third edition of Spacecraft Systems Engineering incorporates the most recent technological advances in spacecraft and satellite engineering. With emphasis on recent developments in space activities, this new edition has been completely revised. Every chapter has been updated and rewritten by an expert engineer in the field, with emphasis on the bus rather than the payload. Encompassing the fundamentals of spacecraft engineering, the book begins with front-end system-level issues, such as environment, mission analysis and system engineering, and progresses to a detailed examination of subsystem elements which represent the core of spacecraft design - mechanical, electrical, propulsion, thermal, control etc. This quantitative treatment is supplemented by an appreciation of the interactions between the elements, which deeply influence the process of spacecraft systems design. In particular the revised text includes * A new chapter on small satellites engineering and applications which has been contributed by two internationally-recognised experts, with insights into small satellite systems engineering. * Additions to the mission analysis chapter, treating issues of aero-manoeuvring, constellation design and small body missions. In summary, this is an outstanding textbook for aerospace engineering and design students, and offers essential reading for spacecraft engineers, designers and research scientists. The comprehensive approach provides an invaluable resource to spacecraft manufacturers and agencies across the world.

Copyright code : ff5c544b17e84e8fe07ed35168bd525c